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Subcritical Hopf bifurcation in dynamical systems described by a scalar
nonlinear delay differential equation
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A subcritical Hopf bifurcation in a dynamical system modeled by a scalar nonlinear delay differential
equation is studied theoretically and experimentally. The subcritical Hopf bifurcation leads to a significant
domain of bistability where stable steady and time-periodic states coexist.
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I. INTRODUCTION

Delay differential equations~DDEs! have attracted a lo
of attention in the field of nonlinear dynamics. They are us
to model complex phenomena like physiological disea
@1#, population dynamics where a finite maturation time
needed@2#, and neuronal networks@3#. DDEs also describe
the response of nonlinear optical devices, such as Ikeda
tical ring cavities@4#, external cavity semiconductor lase
@5#, or optoelectronic oscillators@6–8#. Many of these sys-
tems are accurately described by a single scalar DDE of
form

«y852y1 f „l,y~ t21!…, ~1!

where f (l,y) denotes a nonlinear function ofy, l is a con-
trol or bifurcation parameter, and« corresponds to the deca
time of y normalized by the delay. Provided« is sufficiently
small, the response of the system can be very rich rang
from periodic to high dimensional chaotic outputs.

The complexity and the diversity of dynamical regim
described by Eq.~1! is well documented in the limit of large
delays~limit « small!. These regimes were studied by Loss
et al. @9# who explored the coexisting periodic solutions a
the fractal structure of their basin of attraction in the case
an analytically integrable piecewise constant functionf ( ).
For lasers subject to delay@11,12#, it was shown that these
coexisting periodic solutions result from isolated branches
solutions that accumulate as the delay increases. The a
cation to dynamical memory storage was studied numeric
and experimentally by Fosset al. @10# and by Aidaet al.
@13#; in the latter case, the nonlinear functionf ( ) was a
cosine corresponding to the case of an electrooptic exp
mental setup in which a tunable two-wave interference fig
is involved. In all these setups, periodic solutions are de
mined irrespective to their amplitude.

In this paper, we concentrate on the first Hopf bifurcati
which can be investigated by a local analysis. This bifur
tion is well documented@4,13,15,23#, has been analyze
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mathematically for small« @16,17#, and the supercritica
transition to a stable limit-cycle~see Fig. 1, left! has been
observed experimentally. On the other hand, the case
subcritical bifurcation~see Fig. 1, right! is less studied for
DDE problems although it appears in applications@14#. A
subcritical Hopf bifurcation leads to a branch of unstab
solutions but may fold back and exhibit stable periodic so
tions coexisting with stable steady states. The main objec
of this paper is to determine the size of this overlap wh
has not been addressed in previous mathematical stu
@18#. As we shall demonstrate on a specific problem,
domain of coexistence can be determined analytically fr
Eq. ~1! in the limit « small. By contrast to subcritical Hop
bifurcation problems found for two variable ordinary diffe
ential equations@19#, this domain is substantially importan
An elementary circuit is constructed in order to evaluate
perimentally the validity of our theory.

In Ref. @20#, the direction of the Hopf bifurcation is de
termined for both f (l,y) and « arbitrary by using the
Lindstedt-Poincare´ method@21,22#. In this paper, we deter
mine the direction of bifurcation for the case«50 by using a
different and simpler method.

The paper is organized as follows. In Sec. II, we descr
the conditions for a subcritical bifurcation and show th
there exist severe restrictions onf ( ). Our analysis motivates
the design of an experimental system which is described
Sec. III. Experimental and analytical bifurcation diagram
are then compared. Finally, we discuss our main results
Sec. IV.

II. THE HOPF BIFURCATION

The analysis of the Hopf bifurcation of Eq.~1! for a gen-
eral nonlinear functionf (l,y) is detailed in Ref.@20# using

FIG. 1. Left: supercritical Hopf bifurcation. The branch of stab
periodic solutions overlaps the branch of unstable steady sta
Right: subcritical Hopf bifurcation. The branch of unstable period
solutions overlaps the branch of stable steady states.
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the Lindstedt-Poincare´ perturbation method@21,22#. In this
section, we concentrate on the case«50. Equation~1! then
reduces to the map

yn115 f ~l,yn!. ~2!

Assuming a basic solutionys(l) satisfying

ys5 f ~l,ys!, ~3!

we find from the linearized theory that a Hopf bifurcatio
point l5lc verifies the condition

f y„lc ,ys~lc!…521. ~4!

f y means the partial derivative off ( ) with respect toy
evaluated atl5lc . The stability ofy5ys(l) in the vicinity
l5lc is investigated by determining the solution of the li
earized problem forl5lc1L where L is small. We find
that the stability condition depends on the sign ofa defined
by @15#

a[2~ f yyf l12 f yl!, ~5!

where all partial derivatives are evaluated atl5lc . The
steady state solution is stable~unstable! if

aL,0 ~aL.0!. ~6!

We next wish to determine the direction of bifurcatio
i.e., how the amplitude of the periodic solution changes
we deviate from the Hopf bifurcation point. Note that a p
riodic solution of Eq.~1! means a period 2 fixed point of th
map ~2! satisfying the two conditions

yn115 f ~l,yn!, ~7!

yn5 f ~l,yn11!. ~8!

Introducing the deviationsun5yn2ys and un115yn11
2ys and expanding for smallun , un11, andL5l2lc , we
find

un1152un1S f l f yy

2
1 f ylDLun1

1

2
f yyun

21
1

6
f yyyun

31•••,

~9!

un52un111S f l f yy

2
1 f ylDLun11

1
1

2
f yyun11

2 1
1

6
f yyyun11

3 1•••. ~10!

Now assuming the scalings

un5O~d!, un115O~d!, and L5O~d2!, ~11!

we use Eq.~9! and eliminateun11 in Eq. ~10!. Simplifying,
we find

05aLun1bun
3 , ~12!

wherea is defined by Eq.~5! andb is given by
03621
s
-

b[2S 1

2
f yy

2 1
f yyy

3 D . ~13!

Equation~12! then gives

un5A2
aL

b
~14!

provided aL/b,0. A supercritical~subcritical! bifurcation
means that the periodic solution overlaps an unstable ste
state~stable steady state!. Taking into account the inequali
ties ~6!, a supercritical~subcritical! bifurcation then implies
the condition

b,0~b.0!. ~15!

Thus the sign ofb determines the direction of bifurcation
Because of the first term in Eq.~13!, a necessary condition
for a subcritical bifurcation whereb.0 is thatf yyy,0 what-
ever the sign off yy . This underlines the essential role of th
cubic correction term.

To further study the effect of the nonlinear correctio
terms, we introduce the third-order polynomial functio
given by

f ~l,y!5y~A1By1Cy2!, ~16!

whereA, B, andC are functions ofl. Our basic steady stat
solution isys50 and for simplicity, we assume that the Ho
bifurcation point is located at (lc ,yc)5(1,0). Using condi-
tion ~1! and assuming thata and b defined by Eqs.~5! and
~13! are both positive, we find the conditions

A8~1!521 and C~1!,2B2~1!. ~17!

The first condition is realized withA52l. The second con-
dition is verified ifB50 andC,0. For many Hopf bifurca-
tion problems in nonlinear optics, the bifurcation parame
is a feedback parameter and often appears as a multiplica
weighting factor in the nonlinear growth function. Choosin
C52a2l, our function~16! becomes

f ~l,y!52ly@11~ay!2#. ~18!

The next step is to take into account the unavoida
bounded character of the physical growth functionf (l,y) as
y becomes large. This is, for example, the effect of satura
of the gain medium in an optical system. This can be m
eled by dividing Eq.~18! by a fourth-order polynomial such
as@11(by)4#. The parameterb controls the amount of satu
ration. Our function now is

f ~l,y!52l
y@11~ay!2#

11~by!4
. ~19!

For large delays~« small!, Eq. ~1! reduces to the map~2!.
Period 1 and period 2 fixed points of this equation cor
spond to steady state and square-wave pulsating solution
Eq. ~1!. In the case of Eq.~19!, these fixed point solutions
can be determined analytically~see the Appendix!. We find
0-2
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that the period 2 solutions that emerge froml51 satisfy the
conditionyn1152yn whereyn(l) satisfies the implicit so-
lution

l5
11~byn!4

11~ayn!2
. ~20!

The bifurcation diagramyn(l) is shown numerically in Fig.
5 for a53 andb52. The location of the limit point where
the subcritical Hopf bifurcation branch folds back can
determined from Eq.~20!; see the Appendix. It is located a

l f52~b/a!4@A~a/b!41121#. ~21!

The domain of coexistence is defined by the intervallc
2l f . It is the largest in the limitb→0(l f→0). Note that
the saturation parameterb cannot be zero. Withoutb, the
Hopf bifurcation branch does not fold back. Ifb50, l f50
but yn(0)5` and the subcritical unstable Hopf branch
hyperbolic with a vertical asymptote atl50. In the follow-
ing section, we realize an experimental system that is
scribed by a DDE with a growth function close to Eq.~19!.

III. EXPERIMENTS

The experimental setup for a physical oscillator ruled b
DDE is represented schematically in Fig. 2. It consists o
closed loop system formed by a linear tunable source, a n
linear transformationf ( ), a delay timeT, and a first-order
low-pass filter. Such systems have been used previous
different problems in nonlinear optics@8,15# and in electron-
ics @9,10,24#. Here, we consider an electronic setup describ
in terms of a scalar DDE where the functionf will be de-
signed in order to meet the conditions for a subcritical Ho
bifurcation.

The circuit is described in Fig. 3 and consists of the f
lowing.

~1! A voltage controlled oscillator~VCO!, which corre-
sponds to the linear block in the figure: it delivers an out
sine wave form with an amplitude of 1 V and a frequen
linearly related to the input tuning voltage through a tuni
rate S525.4 kHz/V; the central frequency~zero input! is
adjusted ton0536 kHz; the dynamical variabley corre-
sponds to the VCO output frequencyn, or to its input tuning
voltage.

~2! An electronic filter operating in the tuning range of th
VCO: It is built using two resonant RLC second-order ban

FIG. 2. Block diagram of a typical experiment described by
DDE.
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pass filters, with resonance frequenciesn1580 kHz andn2
599 kHz, and quality factorsQ152.12 andQ253.1, re-
spectively. The two filters operate in parallel, their outpu
are added with a relative factorg2/150.22. To demodulate
the resulting output amplitude, a full-wave rectifier and
low-pass filter with a cutoff frequencync of 3 kHz are used.
This electronic filter followed by the amplitude demodulat
performs the nonlinear functionf involved in the dynamical
process. The role of the low pass is two–fold: it filters o
the FM carrier frequency of the VCO output@see Eq.~22!
and output trace in the left part of Fig. 4#, and it defines the
first-order dynamical process expressed in Eq.~1!, with a
time constantt51/2pnc512 ms.

~3! An electronic delay line performed by an analo
charge-coupled device memory of 256 samples: The res
ing delay isT52.05 ms, thus performing a large delay DD
since«5t/T.0.0058.

~4! A linearly controlled voltage amplifier is used to tun
electronically the oscillator loop gain, which corresponds
the bifurcation parameterl.

Following our description, the nonlinear oscillator is the
modeled by Eq.~1!, with the following nonlinear function:

f ~l,n!5lU in/n1

12~n/n1!21 i ~n/n1!/~A2Q1!

1
ig2/1~n/n2!

12~n/n2!21 i ~n/n2!/~A2Q2!
U . ~22!

In order to best fit the nonlinear function profile with th
shape~19! proposed theoretically, we adjusted the relati
resonance frequencies of the two RLC filters, their qua
factor, and relative amplitudes~parametersn2 , Q2, and
g2/1). To match the experimental nonlinear function with t
theoretical profile in the vicinity of the Hopf bifurcation
point, we stored the latter in an arbitrary wave form gene
tor, and fitted adequately the experimental parameters w
scanning linearly in time the VCO output frequency in t
open loop oscillator configuration. Figure 4~left! represents
the experimental plot of the optimized nonlinear functi
shape. Then, the feedback loop gainl and the operating
point of the VCO (n0) were tuned to a value near the Ho
point.

The bifurcation diagram in Fig. 4~right! was then ob-

FIG. 3. Electronic circuit performing the experimental DDE.
0-3
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LARGER, GOEDGEBUER, AND ERNEUX PHYSICAL REVIEW E69, 036210 ~2004!
tained in the closed loop operation, as the feedback gain
scanned back and forth around the Hopf value. The horiz
tal axis in Fig. 4~right! is the voltage applied to the tunin
feedback loop gain~proportional to the bifurcation paramete
l), and the vertical axis is the voltage at the VCO input~this
voltage is proportional to the electronic frequencyn, i.e., the
dynamical variabley). The traces in Fig. 4~right! have a
brightness related to the amplitude probability for a giv
dynamical regime. When a steady state is the stable solu
for a given bifurcation parameter value, i.e., for a given p
sition along the horizontal axis, a single spot is seen on
vertical line on the oscilloscope screen~left part of the bifur-
cation diagram!. When a cycle is the stable solution, for e
ample, when the bifurcation parameter is above the H
bifurcation point, the oscillation is nearly a symmetric squa
wave form. The two bright spots observed for that regime
a vertical line correspond to the high and low levels of t
square wave form~right part of the bifurcation diagram!.
Since the wave form is continuous in time, some diffu
spots are seen between the two plateaus, which correspo
the switching events between the levels of the square w
form. When three bright spots are seen on a vertical
~central part in the bifurcation diagram!, it corresponds to the
hysteresis region, where the steady state is visited when
creasing the bifurcation parameter, while the cycle is visi
for decreasing bifurcation parameter values. Note the w
spots near the bifurcation point which indicate the typi
slow time scale of the transient evolution near Hopf bifurc
tion point.

The bifurcation diagram can be compared with the d
gram obtained numerically~see Fig. 5! when integrating the
continuous time dynamics of Eq.~1!. The functionf ( ) used
in the numerical simulation is modeled by Eq.~22!, in which
the parameters values are those measured in the experim
setup and given at the beginning of this section.

IV. DISCUSSION

We have studied experimentally a subcritical Hopf bifu
cation in a time delayed feedback system that is describe
Eq. ~1!. The nonlinear growth function was designed af

FIG. 4. Experimental bifurcation diagram. Left: input/outp
trace in the open loop configuration showing the nonlinear func
and the delay when scanning linearly in time the VCO freque
~proportional toy). Right: the bifurcation diagram obtained by in
creasing or decreasing the bifurcation parameter in the vicinity
the Hopf bifurcation point.
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determining theoretically conditions for a subcritical bifurc
tion. The experimental bifurcation diagram shows a sign
cant domain of bistability between a stable limit cycle and
stable steady state. Note that the subcritical nature of
Hopf bifurcation is related to the existence of an unsta
limit cycle near the Hopf bifurcation point. It is not possib
to obtain experimentally a direct proof of the presence of
unstable cycle. That unstable cycle is anticipated through
observation of the hysteresis in the bifurcation diagram a
by comparing with the analytical bifurcation diagram. How
ever, such a hysteresis might also exist with a stable cy
which is not connected to the unstable branch born at
Hopf point. To test this, we tuned slowly and continuous
the relative gaing2/1 while scanning back and forth the b
furcation diagram. Doing so it was possible to dimini
down to zero both the vertical and the horizontal extent
the hysteresis, thus indicating that the stable cycle was ef
tively connected to the unstable cycle.

Theoretically, we concentrated on the case of a subcrit
Hopf bifurcation occurring in the DDE~1! and exhibiting a
large delay~« small!. We have found that the domain o
bistability is independent of« and that it can be significantly
large. This contrasts to relaxation oscillators described
two first-order nonlinear ordinary differential equations@19#.
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APPENDIX: LIMIT POINT OF PERIODIC SOLUTIONS

We wish to determine the critical pointl5l f where
the stable limit cycle connects the unstable limit cycle a
peared at the Hopf bifurcation point. To this end, we fi
note that the nonlinear function shown in Eq.~19! is an odd
function of yn . This implies that any period 2 fixed poin
corresponding to a cycle satisfies the equationf (l,y)52y
with yÞ0, or equivalently, using the function in Eq.~19! the
equation

FIG. 5. Numerical bifurcation diagram. Left: Period 2 fixe
points of the map 2 showing both the stable and unstable soluti
Right: stable steady and periodic solutions of the DDE~1!.n

y

f
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l@11~ay!2#511~by!4. ~A1!

This equation admits two real solutions fory2 if l f,l
,lc . The condition for a double real root determinesl
5lf . This implies that the discriminantD5l2a424(1
er,

s.

M

n

03621
2l)b4 is zero. This equation admits a positive solutio
given by

l f52~b/a!4@A~a/b!41121#. ~A2!
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