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A subcritical Hopf bifurcation in a dynamical system modeled by a scalar nonlinear delay differential
equation is studied theoretically and experimentally. The subcritical Hopf bifurcation leads to a significant
domain of bistability where stable steady and time-periodic states coexist.
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I. INTRODUCTION mathematically for smalle [16,17, and the supercritical
transition to a stable limit-cyclésee Fig. 1, left has been
Delay differential equation$DDES) have attracted a lot observed experimentally. On the other hand, the case of a
of attention in the field of nonlinear dynamics. They are usedsubcritical bifurcation(see Fig. 1, rightis less studied for
to model complex phenomena like physiological disease®DE problems although it appears in applicatiddg]. A
[1], population dynamics where a finite maturation time isSubcritical Hopf bifurcation leads to a branch of unstable
needed 2], and neuronal networkg]. DDEs also describe spluuons pu; may.fold back and exhibit stable perllod|c.sollu—
the response of nonlinear optical devices, such as Ikeda offONS coexisting with stable steady states. The main objective
tical ring cavities[4], external cavity semiconductor lasers ©f tiS paper is to determine the size of this overlap which
[5], or optoelectronic oscillatorEs—8]. Many of these sys- has not been addressed in previous mathematical studies

. . 18]. As we shall demonstrate on a specific problem, the
;g:?ns are accurately described by a single scalar DDE of th omain of coexistence can be determined analytically from

Eg. (1) in the limit e small. By contrast to subcritical Hopf
bifurcation problems found for two variable ordinary differ-
ential equation$19], this domain is substantially important.

: . . An elementary circuit is constructed in order to evaluate ex-
wheref(\,y) denotes a nonlinear function gf \ is a con- perimentally the validity of our theory.

trol or bifurcation parameter, angdcorresponds to the decay = |4 Ref. [20], the direction of the Hopf bifurcation is de-
time of y normalized by the delay. Providedis sufficiently  termined for bothf(\,y) and e arbitrary by using the
small, the response of the system can be very rich rangingindstedt-Poincarenethod[21,22. In this paper, we deter-
from periodic to high dimensional chaotic outputs. mine the direction of bifurcation for the case=0 by using a
The complexity and the diversity of dynamical regimes different and simpler method.

described by Eq(1) is well documented in the limit of large  The paper is organized as follows. In Sec. II, we describe
delays(limit e smal). These regimes were studied by Lossonthe conditions for a subcritical bifurcation and show that
et al.[9] who explored the coexisting periodic solutions andthere exist severe restrictions 6f). Our analysis motivates
the fractal structure of their basin of attraction in the case othe design of an experimental system which is described in
an analytically integrable piecewise constant functf¢n).  Sec. IIl. Experimental and analytical bifurcation diagrams

For lasers subject to deldy1,12, it was shown that these are then compared. Finally, we discuss our main results in
coexisting periodic solutions result from isolated branches ofec. |Vv.

solutions that accumulate as the delay increases. The appli-
cation to dynamical memory storage was studied numerically Il. THE HOPF BIFURCATION
and experimentally by Fosst al. [10] and by Aidaet al. _ . .
[13]; in the latter case, the nonlinear functid) was a The af_‘a'ys's of the Hopf b_|furcat|_on O.f EQQ) for a gen-
cosine corresponding to the case of an electrooptic experfral nonlinear functiorf(x,y) is detailed in Ref[20] using
mental setup in which a tunable two-wave interference figure
is involved. In all these setups, periodic solutions are deter-
mined irrespective to their amplitude.

In this paper, we concentrate on the first Hopf bifurcation
which can be investigated by a local analysis. This bifurca-
tion is well documented4,13,15,23, has been analyzed

gy'=—y+f(\y(t—1)), (1)

FIG. 1. Left: supercritical Hopf bifurcation. The branch of stable
periodic solutions overlaps the branch of unstable steady states.
*Also at GTL CNRS Metz, UMR 6603, 2-3 rue Marconi, Right: subcritical Hopf bifurcation. The branch of unstable periodic
57000 Metz, France. solutions overlaps the branch of stable steady states.
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the Lindstedt-Poincargerturbation method21,22. In this
section, we concentrate on the case0. Equation(1) then
reduces to the map

Yn+1=F(NYn). )
Assuming a basic solutiopg(\) satisfying
Ys=Tf(\,Ys), ©)

PHYSICAL REVIEW B9, 036210 (2004
1 f
_ 2 Ly
b=- (5ny+ 3 |
Equation(12) then gives

/ aA
Up= - T (14

providedaA/b<0. A supercritical(subcritica) bifurcation

(13

we find from the linearized theory that a Hopf bifurcation means that the periodic solution overlaps an unstable steady

point A =\ verifies the condition
fy()\mys()\c)):_l- (4)

f, means the partial derivative d{) with respect toy
evaluated ak =\.. The stability ofy=y¢(\) in the vicinity

state(stable steady stateTaking into account the inequali-
ties (6), a supercriticalsubcritica) bifurcation then implies
the condition

b<0(b>0). (15

A=\ is investigated by determining the solution of the lin- Thus the sign ob determines the direction of bifurcation.

earized problem foh=\.+ A where A is small. We find
that the stability condition depends on the sigraadefined

by [15]
a=—(f,,fy+2f,), (5)

where all partial derivatives are evaluated)at\.. The
steady state solution is staklenstable if

aA<0 (aA>0). (6)

Because of the first term in E¢13), a necessary condition
for a subcritical bifurcation where>0 is thatf,,,<0 what-
ever the sign of ;. This underlines the essential role of the
cubic correction term.

To further study the effect of the nonlinear correction
terms, we introduce the third-order polynomial function
given by

f(N,y)=y(A+By+Cy?), (16)

We next wish to determine the direction of bifurcation, WhereA, B, andC are functions ok. Our basic steady state

i.e., how the amplitude of the periodic solution changes agolution isys=0 and for simplicity, we assume that the Hopf
we deviate from the Hopf bifurcation point. Note that a pe-Pifurcation point is located at\(,yc) =(1,0). Using condi-
riodic solution of Eq(1) means a period 2 fixed point of the tion (1) and assuming that andb defined by Eqs(5) and

map (2) satisfying the two conditions
Yn+1=F(N,Yn), ()
Yn=f(NYns1). €S)

Introducing the deviationsi,=y,—Ys and U, 1=V¥n+1
—Y,s and expanding for small,,, u,; ¢, andA=A—\., we
find

f\f 1 1
Upsg=—Up+ Tyy+fy>\ Aug+ Efyyuﬁ+ gfyyyuﬁJr e
€)
f\f
un:_un+1+(Tyy+fy)\)Aun+1
1 2 1 3
+§fyyun+1+ gfyyyun+1+~-~. (10

Now assuming the scalings

u,=0(8), Uupy1=0(8), and A=0(8), (11

we use Eq(9) and eliminateu,, ; in Eq. (10). Simplifying,
we find

0=aAu,+bud, (12)

wherea is defined by Eq(5) andb is given by

(13) are both positive, we find the conditions
A'(1)=-1 and C(1)<—B?(1). (17

The first condition is realized with= —\. The second con-
dition is verified ifB=0 andC<0. For many Hopf bifurca-
tion problems in nonlinear optics, the bifurcation parameter
is a feedback parameter and often appears as a multiplicative
weighting factor in the nonlinear growth function. Choosing
C=—a®\, our function(16) becomes

FNY)=—Ny[1+(ay)?]. (18

The next step is to take into account the unavoidable
bounded character of the physical growth functign,y) as

y becomes large. This is, for example, the effect of saturation
of the gain medium in an optical system. This can be mod-
eled by dividing Eq(18) by a fourth-order polynomial such
as[ 1+ (By)*]. The parameteB controls the amount of satu-
ration. Our function now is

2
f()\,y):_)\w_ (19

1+(By)*

For large delayss smal), Eq. (1) reduces to the maf®).
Period 1 and period 2 fixed points of this equation corre-
spond to steady state and square-wave pulsating solutions of
Eqg. (). In the case of Eq(19), these fixed point solutions
can be determined analyticallgee the Appendjx We find
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FIG. 2. Block diagram of a typical experiment described by a o ) )
DDE. FIG. 3. Electronic circuit performing the experimental DDE.

that t.h.e period 2 solutions that emerge fram1 _satisfy the pass filters, with resonance frequencigs-80 kHz andv,
condltlonynﬂz —Yn Wherey,(\) satisfies the implicit so- _—gg kHz, and quality factor®,=2.12 andQ,=3.1, re-
lution spectively. The two filters operate in parallel, their outputs
4 are added with a relative factay,;;=0.22. To demodulate
- 1+(BYn) the resulting output amplitude, a full-wave rectifier and a
1+ (ayn)zl low-pass filter with a cutoff frequency, of 3 kHz are used.
This electronic filter followed by the amplitude demodulator
The bifurcation diagrany,(\) is shown numerically in Fig. performs the nonlinear functiohinvolved in the dynamical
5 for =3 and8=2. The location of the limit point where process. The role of the low pass is two—fold: it filters out
the subcritical Hopf bifurcation branch folds back can bethe FM carrier frequency of the VCO outpldee Eq.(22)
determined from Eq(20); see the Appendix. It is located at and output trace in the left part of Fig],4and it defines the
first-order dynamical process expressed in Eqg, with a
N=2(Bla)[V(al B)*+1—1]. (21)  time constantr=1/2wv =12 us.
(3) An electronic delay line performed by an analog
The domain of coexistence is defined by the internal  charge-coupled device memory of 256 samples: The result-
—\;. It is the largest in the limii3—0(\;—0). Note that ing delay isT=2.05 ms, thus performing a large delay DDE
the saturation parametgd cannot be zero. Withous, the  sincee=7/T=0.0058.
Hopf bifurcation branch does not fold back. #=0, A ;=0 (4) A linearly controlled voltage amplifier is used to tune
but y,(0)=2 and the subcritical unstable Hopf branch is electronically the oscillator loop gain, which corresponds to
hyperbolic with a vertical asymptote at=0. In the follow- the bifurcation parametex.
ing section, we realize an experimental system that is de- Following our description, the nonlinear oscillator is then
scribed by a DDE with a growth function close to E@9). modeled by Eq(1), with the following nonlinear function:

(20

Ill. EXPERIMENTS

ivlv

The experimental setup for a physical oscillator ruled by a f(Nv)=A > -
DDE is represented schematically in Fig. 2. It consists of a 1= (vlvy)*+i(vlv1)/(\2Q1)
closed loop system formed by a linear tunable source, a non- . /
linear transformatiorf(), a delay timeT, and a first-order '92(v/v2) ‘ (22)
low-pass filter. Such systems have been used previously in 1—(y/y2)2+i(v/v2)/(\/§Q2)‘
different problems in nonlinear opti¢8,15 and in electron-
ics[9,10,24. Here, we consider an electronic setup described
in terms of a scalar DDE where the functiérwill be de- In order to best fit the nonlinear function profile with the
signed in order to meet the conditions for a subcritical Hopfshape(19) proposed theoretically, we adjusted the relative
bifurcation. resonance frequencies of the two RLC filters, their quality

The circuit is described in Fig. 3 and consists of the fol-factor, and relative amplitudegarametersv,, Q,, and
lowing. 0,1). To match the experimental nonlinear function with the

(1) A voltage controlled oscillatofVCO), which corre-  theoretical profile in the vicinity of the Hopf bifurcation
sponds to the linear block in the figure: it delivers an outputpoint, we stored the latter in an arbitrary wave form genera-
sine wave form with an amplitude of 1 V and a frequencytor, and fitted adequately the experimental parameters while
linearly related to the input tuning voltage through a tuningscanning linearly in time the VCO output frequency in the
rate S=25.4 kHz/V; the central frequencizero inpuj is  open loop oscillator configuration. Figure(keft) represents
adjusted tovy=36 kHz; the dynamical variablg corre- the experimental plot of the optimized nonlinear function
sponds to the VCO output frequeneyor to its input tuning  shape. Then, the feedback loop gainand the operating
voltage. point of the VCO @) were tuned to a value near the Hopf

(2) An electronic filter operating in the tuning range of the point.

VCO: It is built using two resonant RLC second-order band- The bifurcation diagram in Fig. 4right) was then ob-
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FIG. 5. Numerical bifurcation diagram. Left: Period 2 fixed

- X ! J ) -* points of the map 2 showing both the stable and unstable solutions.
trace in the open loop configuration showing the nonlinear functlorpight: stable steady and periodic solutions of the DRE
and the delay when scanning linearly in time the VCO frequency

(proportional toy). Right: the bifurcation diagram obtained by in-
creasing or decreasing the bifurcation parameter in the vicinity of.

»
'

FIG. 4. Experimental bifurcation diagram. Left: input/output

petermining theoretically conditions for a subcritical bifurca-
tion. The experimental bifurcation diagram shows a signifi-
cant domain of bistability between a stable limit cycle and a
) . ) ) stable steady state. Note that the subcritical nature of the
tained in the closed loop operation, as the feedback gain wasopf bifurcation is related to the existence of an unstable
scanned back and forth around the Hopf value. The horizonimit cycle near the Hopf bifurcation point. It is not possible
tal axis in Fig. 4(right) is the voltage applied to the tuning to obtain experimentally a direct proof of the presence of the
feedback loop gaifproportional to the bifurcation parameter unstable cycle. That unstable cycle is anticipated through the
\), and the vertical axis is the voltage at the VCO infibis  observation of the hysteresis in the bifurcation diagram and
voltage is proportional to the electronic frequencyi.e., the by comparing with the analytical bifurcation diagram. How-
dynamical variabley). The traces in Fig. 4right) have a  ever, such a hysteresis might also exist with a stable cycle
brightness related to the amplitude probability for a givenWhiCh is not connected to the unstable branch born at the
dynamical regime. When a steady state is the stable solutidropf point. To test this, we tuned slowly and continuously
for a given bifurcation parameter value, i.e., for a given po-the relative gaing,,; while scanning back and forth the bi-
sition along the horizontal axis, a single spot is seen on th&ircation diagram. Doing so it was possible to diminish
vertical line on the oscilloscope screg@eft part of the bifur- down to zero both the vertical and the horizontal extent of
cation diagram When a cycle is the stable solution, for ex- the hysteresis, thus indicating that the stable cycle was effec-

ample, when the bifurcation parameter is above the HopflVEly connected to the unstable cycle.

bifurcation point, the oscillation is nearly a symmetric square Theoretically, we concentrated on the case of a subcritical

; - opf bifurcation occurring in the DDE1) and exhibiting a
wave form._ The two bright spots ob_served for that regime Or';rge delay(e¢ smal). We have found that the domain of
a vertical line correspond to the high and low levels of the,

square wave forn(right part of the bifurcation diagram bistability is independent of and that it can be significantly

; . X L _ large. This contrasts to relaxation oscillators described by
Since the wave form is continuous in time, some d|ffuset

! wo first-order nonlinear ordinary differential equatididg].
spots are seen between the two plateaus, which correspond to

the switching events between the levels of the square wave

form. When three bright spots are seen on a vertical line ACKNOWLEDGMENTS

(central part in the bifurcation diagranit corresponds to the
hysteresis region, where the steady state is visited when i
creasing the bifurcation parameter, while the cycle is visite
for decreasing bifurcation parameter values. Note the whit%
spots near the bifurcation point which indicate the typical

slow time scale of the transient evolution near Hopf b|furca—|:Onols National de la Recherche ScientifigBelgium), and

tion point. ; ) . .
The bifurcation diagram can be compared with the dia_the InterUniversity Attraction Pole program of the Belgian

gram obtained numericallgsee Fig. 5 when integrating the government.

continuous time dynamics of E@L). The functionf() used

in the numerical simulation is modeled by Eg2), in which APPENDIX: LIMIT POINT OF PERIODIC SOLUTIONS
the parameters values are those measured in the experimental

setup and given at the beginning of this section. We wish to determine the critical point=\ where
the stable limit cycle connects the unstable limit cycle ap-

peared at the Hopf bifurcation point. To this end, we first
note that the nonlinear function shown in Ef9) is an odd
function of y,. This implies that any period 2 fixed point

We have studied experimentally a subcritical Hopf bifur- corresponding to a cycle satisfies the equafipn,y)=—y
cation in a time delayed feedback system that is described byith y+ 0, or equivalently, using the function in E.9) the
Eqg. (1). The nonlinear growth function was designed afterequation

the Hopf bifurcation point.
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IV. DISCUSSION
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N1+ (ay)?]=1+(By)*. (A1)
This equation admits two real solutions fgf if A<\
<\.. The condition for a double real root determings
=\;. This implies that the discriminanh=\2a*—4(1

PHYSICAL REVIEW E 69, 036210 (2004

—\)B* is zero. This equation admits a positive solution
given by

Ne=2(Bla) [ V(al B)*+1—1].

(A2)

[1] M.C. Mackey and L. Glass, Sciend®7, 287 (1977).
[2] R.M. May, Nature(London 261, 459(1976.
[3] J. Wei and S. Ruan, Physica IB0, 255 (1999.
[4] K. Ikeda, Opt. Commun30, 257 (1979.
[5] R. Lang and K. Kobayashi, IEEE J. Quantum Electrt$).347
(1980
[6] H.M. Gibbs, F.A. Hopf, D.L. Kaplan, and R.L. Schoemacker,
Phys. Rev. Lett46, 474 (1981).
[7] F. Arecchi, W. Gadomski, and R. Meucci, Phys. Rev34
1617(1986.
[8] L. Larger, J.-P. Goedgebuer, and J.M.reléa, IEEE J. Quan-
tum Electron.34, 594 (1988.
[9] J. Losson, M.C. Mackey, and A. Longtin, Cha&sl67(1993.
[10] J. Foss, F. Moss, and J. Milton, Phys. Re\b%; 4536(1997).
[11] P.M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux, Phys.
Rev. A53, 4429(1996.

[12] D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, SIAM
(Soc. Ind. Appl. Math. J. Appl. Math.61, 966 (2000.

[13] T. Aida and P. Davis, IEEE J. Quantum Electrd8, 686
(1992.

[14] T. Kalmar-Nagy, G. Stepan, and F.C. Moon, Nonlinear Dyn.

26, 121 (2001).

[15] L. Larger, M.W. Lee, J.P. Goedgebuer, T. Erneux, and W. Elf-
lein, J. Opt. Soc. Am. BL8, 1063(2001).

[16] S.-N. Chow and J. Mallet-Paret, @oupled Nonlinear Oscil-
lators, edited by J. Chandra and A.C. Sc@iorth-Holland,
Amsterdam, 1983 p. 7.

[17] S.N. Chow, J.K. Hale, and W. Huang, Proc. R. Soc. Edinburgh,
Sect. A: Math.120, 223(1992.

[18] J.K. Hale and W. Huang, J. Diff. Eqn§14, 1 (1994).

[19] S.M. Baer and T. Erneux, SIAMSoc. Ind. Appl. Math. J.
Appl. Math. 46, 721(1986; 52, 1651(1992.

[20] T. Erneux, L. Larger, M.W. Lee, and J.-P. Goedgebuer, Physica
D (to be publishegd

[21] P.G. Drazin,Nonlinear System&ambridge University Press,
Cambridge, 1992

[22] A. Nayfeh, Perturbation MethodgWiley Interscience, New
York, 1973.

[23] G. looss and D.D. JosepEjementary Stability and Bifurca-
tion Theory Und. Texts in Mathematic&Springer-Verlag, New
York, 1980; 2nd ed.(Springer, New York, 1990

[24] L. Larger, V.S. Udaltsov, and J.P. Goedgebuer, Electron. Lett.
36, 199 (2000.

036210-5



